Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(4): 2883-2893, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36875181

RESUMO

Studying the optical performance of carbon nanotubes (CNTs) filled with guest materials can reveal the fundamental photochemical nature of ultrathin one-dimensional (1D) nanosystems, which are attractive for applications including photocatalysis. Here, we report comprehensive spectroscopic studies of how infiltrated HgTe nanowires (NWs) alter the optical properties of small-diameter (d t < 1 nm) single-walled carbon nanotubes (SWCNTs) in different environments: isolated in solution, suspended in a gelatin matrix, and heavily bundled in network-like thin films. Temperature-dependent Raman and photoluminescence measurements revealed that the HgTe NW filling can alter the stiffness of SWCNTs and therefore modify their vibrational and optical modes. Results from optical absorption and X-ray photoelectron spectroscopy demonstrated that the semiconducting HgTe NWs did not provide substantial charge transfer to or from the SWCNTs. Transient absorption spectroscopy further highlighted that the filling-induced nanotube distortion can alter the temporal evolution of excitons and their transient spectra. In contrast to previous studies on functionalized CNTs, where electronic or chemical doping often drove changes to the optical spectra, we highlight structural distortion as playing an important role.

2.
Adv Mater ; 35(10): e2208575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36528852

RESUMO

Halide perovskite structures are revolutionizing the design of optoelectronic materials, including solar cells, light-emitting diodes, and photovoltaics when formed at the quantum scale. Four isolated sub-nanometer, or picoscale, halide perovskite structures formed inside ≈1.2-1.6 nm single-walled carbon nanotubes (SWCNTs) by melt insertion from CsPbBr3 and lead-free CsSnI3 are reported. Three directly relate to the ABX3 perovskite archetype while a fourth is a perovskite-like lamellar structure with alternating Cs4 and polyhedral Sn4 Ix layers. In ≈1.4 nm-diameter SWCNTs, CsPbBr3 forms Cs3 PbII Br5 nanowires, one ABX3 unit cell in cross section with the Pb2+ oxidation state maintained by ordered Cs+ vacancies. Within ≈1.2 nm-diameter SWCNTs, CsPbBr3 and CsSnI3 form inorganic-polymer-like bilayer structures, one-fourth of an ABX3 unit cell in cross section with systematically reproduced ABX3 stoichiometry. Producing these smallest halide perovskite structures at their absolute synthetic cross-sectional limit enables quantum confinement effects with first-principles calculations demonstrating bandgap widening compared to corresponding bulk structural forms.

3.
ACS Nano ; 16(4): 6789-6800, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389617

RESUMO

Atomically thin nanowires (NWs) can be synthesized inside single-walled carbon nanotubes (SWCNTs) and feature unique crystal structures. Here we show that HgTe nanowires formed inside small-diameter (<1 nm) SWCNTs can advantageously alter the optical and electronic properties of the SWCNTs. Metallic purification of the filled SWCNTs was achieved by a gel column chromatography method, leading to an efficient extraction of the semiconducting and metallic portions with known chiralities. Electron microscopic imaging revealed that zigzag HgTe chains were the dominant NW geometry in both the semiconducting and metallic species. Equilibrium-state and ultrafast spectroscopy demonstrated that the coupled electron-phonon system was modified by the encapsulated HgTe NWs, in a way that varied with the chirality. For semiconducting SWCNTs with HgTe NWs, Auger relaxation processes were suppressed, leading to enhanced photoluminescence emission. In contrast, HgTe NWs enhanced the Auger relaxation rate of metallic SWCNTs and created faster phonon relaxation, providing experimental evidence that encapsulated atomic chains can suppress hot carrier effects and therefore boost electronic transport.

4.
ACS Nano ; 15(8): 13389-13398, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370946

RESUMO

One-dimensional (1D) atomic chains of CsI were previously reported in double-walled carbon nanotubes with ∼0.8 nm inner diameter. Here, we demonstrate that, while 1D CsI chains form within narrow ∼0.73 nm diameter single-walled carbon nanotubes (SWCNTs), wider SWCNT tubules (∼0.8-1.1 nm) promote the formation of helical chains of CsI 2 × 1 atoms in cross-section. These CsI helices create complementary oval distortions in encapsulating SWCNTs with highly strained helices formed from strained Cs2I2 parallelogram units in narrow tubes to lower strain Cs2I2 units in wider tubes. The observed structural changes and charge distribution were analyzed by density-functional theory and Bader analysis. CsI chains also produce conformation-selective changes to the electronic structure and optical properties of the encapsulating tubules. The observed defects are an interesting variation from defects commonly observed in alkali halides as these are normally associated with the Schottky and Frenkel type. The energetics of CsI 2 × 1 helix formation in SWCNTs suggests how these could be controllably formed.

5.
Nat Commun ; 11(1): 2223, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376862

RESUMO

Stem cells are one of the foundational evolutionary novelties that allowed the independent emergence of multicellularity in the plant and animal lineages. In plants, the homeodomain (HD) transcription factor WUSCHEL (WUS) is essential for the maintenance of stem cells in the shoot apical meristem. WUS has been reported to bind to diverse DNA motifs and to act as transcriptional activator and repressor. However, the mechanisms underlying this remarkable behavior have remained unclear. Here, we quantitatively delineate WUS binding to three divergent DNA motifs and resolve the relevant structural underpinnings. We show that WUS exhibits a strong binding preference for TGAA repeat sequences, while retaining the ability to weakly bind to TAAT elements. This behavior is attributable to the formation of dimers through interactions of specific residues in the HD that stabilize WUS DNA interaction. Our results provide a mechanistic basis for dissecting WUS dependent regulatory networks in plant stem cell control.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Motivos de Nucleotídeos/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA/metabolismo , Dimerização , Proteínas de Homeodomínio/genética , Brotos de Planta/genética , Ligação Proteica , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nano Lett ; 20(5): 3560-3567, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324411

RESUMO

Heterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure's equilibrium and ultrafast optoelectronics. Ultrafast pump-probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices.

7.
Nano Lett ; 19(5): 2979-2984, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973739

RESUMO

We report the observation of four unprecedented new crystalline forms of SnSe, obtained as a result of encapsulation in narrow to medium diameter single-walled carbon nanotubes. Aberration-corrected scanning transmission electron microscopy at 80 kV revealed linear, zigzag, helical (i.e., 2 × 1) atomic chains and a new form of encapsulated SnSe. This new form is apparently isostructural to free-standing MoS, MoSe, and WSe extreme nanowires etched from the corresponding monolayer dichalcogenides and also recently observed encapsulated MoTe. A structural model has been attained from annular dark-field (ADF) images. The experimental imaging agrees well with image simulations produced from models anticipated for the new structural forms.

8.
Nanoscale ; 10(41): 19469-19477, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30318554

RESUMO

2D Boron Nitride Nano-sheets (BNNS) were prepared using a high-pressure homogenisation process to exfoliate bulk hexagonal boron nitride (h-BN). The effectiveness of this process was studied by characterising bulk h-BN and BNNS post-processing using numerous techniques. The BNNS produced was composed of a mixture of sheets having lengths on the nanometre (nm) scale, but lateral thicknesses on the micron (µm) length scale. The product was a macro-porous material containing slit-like pores with a surface area of 170 m2 g-1. It had a polycrystalline structure with d002 = 0.335 nm and L002 = 2 nm. From the sharp E2g peak in the Raman spectrum at 1360 cm-1 (FWHM = 12.5 cm-1), the sheets had a low defect density and were highly exfoliated. X-Ray photoelectron spectroscopy (XPS) studies detected B-OH and N-H groups on the BNNS surface and the presence of residual surfactant. Contact angle measurements (60°± 3° (0 s); 40°± 2° (10 s)) confirmed a hydrophilic surface. The BNNS was thermally stable under oxidative conditions up to 323 °C.

9.
Structure ; 26(11): 1440-1450.e5, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146170

RESUMO

The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sítios de Ligação , Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Partícula de Reconhecimento de Sinal/metabolismo
10.
Nano Lett ; 18(9): 5373-5381, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30067903

RESUMO

Atomically thin black phosphorus (BP) has attracted considerable interest due to its unique properties, such as an infrared band gap that depends on the number of layers and excellent electronic transport characteristics. This material is known to be sensitive to light and oxygen and degrades in air unless protected with an encapsulation barrier, limiting its exploitation in electrical devices. We present a new scalable technique for nanopatterning few layered BP by direct electron beam exposure of encapsulated crystals, achieving a spatial resolution down to 6 nm. By encapsulating the BP with single layer graphene or hexagonal boron nitride (hBN), we show that a focused electron probe can be used to produce controllable local oxidation of BP through nanometre size defects created in the encapsulation layer by the electron impact. We have tested the approach in the scanning transmission electron microscope (STEM) and using industry standard electron beam lithography (EBL). Etched regions of the BP are stabilized by a thin passivation layer and demonstrate typical insulating behavior as measured at 300 and 4.3 K. This new scalable approach to nanopatterning of thin air sensitive crystals has the potential to facilitate their wider use for a variety of sensing and electronics applications.

11.
ACS Nano ; 12(6): 6023-6031, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29782147

RESUMO

Nanostructuring, e. g., reduction of dimensionality in materials, offers a viable route toward regulation of materials electronic and hence functional properties. Here, we present the extreme case of nanostructuring, exploiting the capillarity of single-walled carbon nanotubes (SWCNTs) for the synthesis of the smallest possible SnTe nanowires with cross sections as thin as a single atom column. We demonstrate that by choosing the appropriate diameter of a template SWCNT, we can manipulate the structure of the quasi-one-dimensional (1D) SnTe to design electronic behavior. From first principles, we predict the structural re-formations that SnTe undergoes in varying encapsulations and confront the prediction with TEM imagery. To further illustrate the control of physical properties by nanostructuring, we study the evolution of transport properties in a homologous series of models of synthesized and isolated SnTe nanowires varying only in morphology and atomic layer thickness. This extreme scaling is predicted to significantly enhance thermoelectric performance of SnTe, offering a prospect for further experimental studies and future applications.

12.
Nano Lett ; 18(2): 941-947, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29356551

RESUMO

Electrodeposition of Sn from supercritical difluoromethane has been performed into anodic alumina templates with pores down to 3 nm in diameter and into mesoporous silica templates with pores of diameter 1.5 nm. Optimized deposits have been characterized using X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy (bright field, high-angle annular dark field, and energy-dispersive X-ray elemental mapping). Crystalline 13 nm diameter Sn nanowires have been electrodeposited in symmetric pore anodic alumina. Direct transmission electron microscopy evidence of sub 7 nm Sn nanowires in asymmetric anodic alumina has been obtained. These same measurements present indirect evidence for electrodeposition through 3 nm constrictions in the same templates. A detailed transmission electron microscopy study of mesoporous silica films after Sn deposition is presented. These indicate that it is possible to deposit Sn through the 1.5 nm pores in the mesoporous films, but that the nanowires formed are not stable. Suggestions of why this is the case and how such extreme nanowires could be stabilized are presented.

13.
RSC Adv ; 8(42): 24013-24020, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540274

RESUMO

Tin was electrodeposited from a dichloromethane-based electrolyte at ambient temperature into gold coated anodic alumina membranes with nanoscale pores. The tin nanowires are mainly 〈200〉 aligned, together with some 〈101〉 and 〈301〉 wires. Partial filling of the structure and a distribution of wire lengths was found. Grafting of the pores with hydrophobic surface groups was trialled as a means of modifying the deposition, however, it did not increase the proportion of pores in which wires grew. Under potentiostatic conditions the limited rates of nucleation and diffusion down the 1D pores control the growth of the nanowires.

14.
ACS Nano ; 11(6): 6178-6185, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28467832

RESUMO

Extreme nanowires (ENs) represent the ultimate class of crystals: They are the smallest possible periodic materials. With atom-wide motifs repeated in one dimension (1D), they offer a privileged perspective into the physics and chemistry of low-dimensional systems. Single-walled carbon nanotubes (SWCNTs) provide ideal environments for the creation of such materials. Here we present a comprehensive study of Te ENs encapsulated inside ultranarrow SWCNTs with diameters between 0.7 nm and 1.1 nm. We combine state-of-the-art imaging techniques and 1D-adapted ab initio structure prediction to treat both confinement and periodicity effects. The studied Te ENs adopt a variety of structures, exhibiting a true 1D realization of a Peierls structural distortion and transition from metallic to insulating behavior as a function of encapsulating diameter. We analyze the mechanical stability of the encapsulated ENs and show that nanoconfinement is not only a useful means to produce ENs but also may actually be necessary, in some cases, to prevent them from disintegrating. The ability to control functional properties of these ENs with confinement has numerous applications in future device technologies, and we anticipate that our study will set the basic paradigm to be adopted in the characterization and understanding of such systems.

15.
ACS Nano ; 11(3): 2894-2904, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28195699

RESUMO

We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe2 lattice stabilizing Se divacancies. We further observe evidence of Pt substitution into both Se and Nb vacancy sites. This knowledge of the character and relative frequency of different atomic defects provides the potential to better understand and control the unusual electronic and magnetic properties of this exciting two-dimensional material.

16.
Nano Lett ; 17(2): 805-810, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28005367

RESUMO

The structural organization of compounds in a confined space of nanometer-scale cavities is of fundamental importance for understanding the basic principles for atomic structure design at the nanolevel. Here, we explore size-dependent structure relations between one-dimensional PbTe nanocrystals and carbon nanotube containers in the diameter range of 2.0-1.25 nm using high-resolution transmission electron microscopy and ab initio calculations. Upon decrease of the confining volume, one-dimensional crystals reveal gradual thinning, with the structure being cut from the bulk in either a <110> or a <100> growth direction until a certain limit of ∼1.3 nm. This corresponds to the situation when a stoichiometric (uncharged) crystal does not fit into the cavity dimensions. As a result of the in-tube charge compensation, one-dimensional superstructures with nanometer-scale atomic density modulations are formed by a periodic addition of peripheral extra atoms to the main motif. Structural changes in the crystallographic configuration of the composites entail the redistribution of charge density on single-walled carbon nanotube walls and the possible appearance of the electron density wave. The variation of the potential attains 0.4 eV, corresponding to charge density fluctuations of 0.14 e/atom.

17.
Chemistry ; 22(51): 18362-18367, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27727487

RESUMO

Cation size effects were examined in the mixed A-site perovskites La0.5 Sm0.5 CrO3 and La0.5 Tb0.5 CrO3 prepared through both hydrothermal and solid-state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation-radius variance in La0.5 Tb0.5 CrO3 results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid-state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La3+ and Tb3+ . The A-site layering in hydrothermal La0.5 Tb0.5 CrO3 is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route.

18.
J Am Chem Soc ; 138(26): 8175-83, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258384

RESUMO

In organic synthesis, the composition and structure of products are predetermined by the reaction conditions; however, the synthesis of well-defined inorganic nanostructures often presents a significant challenge yielding nonstoichiometric or polymorphic products. In this study, confinement in the nanoscale cavities of single-walled carbon nanotubes (SWNTs) provides a new approach for multistep inorganic synthesis where sequential chemical transformations take place within the same nanotube. In the first step, SWNTs donate electrons to reactant iodine molecules (I2), transforming them to iodide anions (I(-)). These then react with metal hexacarbonyls (M(CO)6, M = Mo or W) in the next step, yielding anionic nanoclusters [M6I14](2-), the size and composition of which are strictly dictated by the nanotube cavity, as demonstrated by aberration-corrected high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. Atoms in the nanoclusters [M6I14](2-) are arranged in a perfect octahedral geometry and can engage in further chemical reactions within the nanotube, either reacting with each other leading to a new polymeric phase of molybdenum iodide [Mo6I12]n or with hydrogen sulfide gas giving rise to nanoribbons of molybdenum/tungsten disulfide [MS2]n in the third step of the synthesis. Electron microscopy measurements demonstrate that the products of the multistep inorganic transformations are precisely controlled by the SWNT nanoreactor with complementary Raman spectroscopy revealing the remarkable property of SWNTs to act as a reservoir of electrons during the chemical transformation. The electron transfer from the host nanotube to the reacting guest molecules is essential for stabilizing the anionic metal iodide nanoclusters and for their further transformation to metal disulfide nanoribbons synthesized in the nanotubes in high yield.

19.
J Vis Exp ; (110)2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27168195

RESUMO

This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample.


Assuntos
Nanofios/análise , Análise Espectral Raman/métodos , Luz , Nanotubos de Carbono , Vibração
20.
Chem Commun (Camb) ; 52(38): 6375-8, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27074292

RESUMO

A new barium ruthenium oxyhydroxide Ba4Ru3O10.2(OH)1.8 crystallises under hydrothermal conditions at 200 °C: powder neutron diffraction data show it adopts an 8H hexagonal perovskite structure with a new stacking sequence, while high resolution electron microscopy reveals regions of ordered layers of vacant Ru sites, and magnetometry shows antiferromagnetism with TN = 200(5) K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...